7 research outputs found

    Transformers for 1D Signals in Parkinson's Disease Detection from Gait

    Full text link
    This paper focuses on the detection of Parkinson's disease based on the analysis of a patient's gait. The growing popularity and success of Transformer networks in natural language processing and image recognition motivated us to develop a novel method for this problem based on an automatic features extraction via Transformers. The use of Transformers in 1D signal is not really widespread yet, but we show in this paper that they are effective in extracting relevant features from 1D signals. As Transformers require a lot of memory, we decoupled temporal and spatial information to make the model smaller. Our architecture used temporal Transformers, dimension reduction layers to reduce the dimension of the data, a spatial Transformer, two fully connected layers and an output layer for the final prediction. Our model outperforms the current state-of-the-art algorithm with 95.2\% accuracy in distinguishing a Parkinsonian patient from a healthy one on the Physionet dataset. A key learning from this work is that Transformers allow for greater stability in results. The source code and pre-trained models are released in https://github.com/DucMinhDimitriNguyen/Transformers-for-1D-signals-in-Parkinson-s-disease-detection-from-gait.gitComment: International Conference on Pattern Recognition (ICPR 2022

    Transformers for 1D signals in Parkinson’s disease detection from gait

    Get PDF

    Multi-Object Tracking and Segmentation with a Space-Time Memory Network

    Full text link
    We propose a method for multi-object tracking and segmentation that does not require fine-tuning or per benchmark hyper-parameter selection. The proposed tracker, MeNToS, addresses particularly the data association problem. Indeed, the recently introduced HOTA metric, which has a better alignment with the human visual assessment by evenly balancing detections and associations quality, has shown that improvements are still needed for data association. After creating tracklets using instance segmentation and optical flow, the proposed method relies on a space-time memory network developed for one-shot video object segmentation to improve the association of tracklets with temporal gaps. We evaluated our tracker on KITTIMOTS and MOTSChallenge and show the benefit of our data association strategy with the HOTA metric. The project page is \url{www.mehdimiah.com/mentos+}.Comment: arXiv admin note: text overlap with arXiv:2107.0706

    MeNToS : Tracklets association with a space-time memory network

    No full text
    We propose a method for multi-object tracking and segmentation (MOTS) that does not require fine-tuning or per benchmark hyperparameter selection. The proposed method addresses particularly the data association problem. Indeed, the recently introduced HOTA metric, that has a better alignment with the human visual assessment by evenly balancing detections and associations quality, has shown that improvements are still needed for data association. After creating tracklets using instance segmentation and optical flow, the proposed method relies on a space-time memory network (STM) developed for one-shot video object segmentation to improve the association of tracklets with temporal gaps. To the best of our knowledge, our method, named MeNToS, is the first to use the STM network to track object masks for MOTS. We took the 4th place in the RobMOTS challenge. The project page is https://mehdimiah.com/mentos.html.Comment: Presented at the "Robust Video Scene Understanding: Tracking and Video Segmentation" workshop (CVPR-W 2021

    Nutrient Management and Use Efficiency in Wheat Systems of South Asia

    No full text
    corecore